psi
psi

Hiroshi Nakatsuji

Nakatsuji

Born November 21, 1943 in Osaka, Japan.

Director of Quantum Chemistry Research Institute, Kyoto, Japan Professor Emeritus, Kyoto University.

Email:h.nakatsuji@qcri.or.jp
WWW: external link

Honorary Medal, Czech Academy of Science (2018); Schrödinger Medal, WATOC (2016); Senior CMOA Medal (2011); Fukui Medal, APATCC (2009); Chemical Society of Japan Award (2004); Physical Chemistry Award, Chemical Society of Japan (1991); Fellow, WATOC(2016); IAQMS(1993); APATCC

Author of:

Important Contributions:

  • General Methods of Solving the Schrödinger and Dirac Equations were proposed (2000-2007). In his theory, the Hamiltonian of the system paves the way to its exact ground and excited wave functions, producing the complement functions that span the potentially exact wave functions. Variational calculations give super accurate results and local Schrödinger equation (LSE) method provides a general integral-free method that is applicable to any atoms and molecules. See, Acc. Chem. Res. 45(9), 1480-1490 (2012) for a review.
  • SAC-CI Theory for Molecular Excited and Ionized States (1978) is useful to study singlet-to-septet ground and excited states of organic and inorganic molecular systems and the energy gradient of each state. It has been applied to fine spectroscopy, photobiology, surface photochemistry, and giant molecular systems. This program is implemented in Gaussian.
  • Dipped Adcluster Model (DAM) for Surface-Molecule Interactions and Reactions (1987) is a theoretical model for chemisorptions and catalytic reactions on a metal surface. It includes the effects of bulk metal like electron transfer and image force. DAM has been useful to clarify surface chemistry like electron harpooning and transfer, olefin epoxidation reactions on Ag surface, etc.
  • Theory for the Direct Determination of Density Matrix: Density equation that is equivalent to the Schrödinger equation in the density-matrix space was presented (1976) and solved for real molecules (1996). Variational principle for 2-density matrices was formulated using the positive definite algorithm (2001).
  • Intuitive Force Concept for Molecular Geometry and Chemical Reaction was developed (1973) based on the electrostatic (Hellmann-Feynman) theorem. It is more useful than the VSEPR theory and the Walsh model. Electron-cloud preceding (1974) was shown to be a common behavior in the course of the chemical reaction.
  • Electronic Mechanism and Relativistic Effect in NMR Chemical Shifts: Electronic mechanism of the metal chemical shift is an intrinsic property of the resonant nucleus, characterized by its position in the periodic table (1984-1993). Relativistic effects are of crucial importance for molecules including heavy elements (1995-2003) even when the resonant nucleus is light.
For more details, see here.